BOOLEAN ALGEBRA CLASS XII

Presented By :
Dinesh Patel
PGT CS
KV IIT Powai

Introduction

- Boolean Algebra is a set of rules and regulation which is suitable for Digital Circuits, whose answer is either True or False

Open

Close

History

- Mr. Aristotal constructed a compete system of formal logic to organize man's reasoning. Only Mathematician George Boole become able to manipulate these symbols to arrive the solution with mathematical system of Logic and produce new system the Algebra of logic .i.e. Boolean Algebra.

Truth Table

- Present all the possible values and result of logical variable with given combinations of values.

No. of combination $=2^{n}$
[n is no. of variables / Options]
Eg. (1) I want to have tea
(2) Tea is available

I want to have tea	Tea is available	Result
T	T	T
T	F	F
F	T	F
F	F	F

I want to have tea	Tea is available	Result
1	1	1
1	0	0
0	1	0
0	0	0

- TAUTOLOGY : If result of any logical statement or expression if always TRUE or 1 called Tautology.
- FALLACY : If result of any logical statement or expression if always FALSE or 0 called Fallacy.

Logical Operators

- NOT
- OR
-AND

NOT Operator

eg. I want to have tea.
NOT [I want to have tea]
means
I don't want to have tea

Truth table for NOT operator

I want to have tea	Result
X	X^{\prime}
1	0
0	1

OR Operator

OR operator being denoted as Logical Addition and symbol used for it is ' + '

Truth Table for OR operator

X	Y	$X+Y$
1	1	1
1	0	1
0	1	1
0	0	0

AND Operator

AND operator being denoted as Logical Multiplication and symbol used for it is '.'

Truth Table for OR operator

X	Y	$X \cdot Y$
1	1	1
1	0	0
0	1	0
0	0	0

NOT, OR, AND Operator

Truth Table for NOT, OR, AND operator

\mathbf{X}	\mathbf{Y}	\mathbf{X}	\mathbf{Y}	$\mathrm{X}+\mathrm{Y}$	$\mathrm{X} \cdot \mathrm{Y}$
1	1	0	0	1	1
1	0	0	1	1	0
0	1	1	0	1	0
0	0	1	1	0	0

Truth Table for X.Z, Y.Z' and (YZ)'

Truth Table for NOT, OR, AND operator

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{Z}	$\mathrm{X} \cdot \mathrm{Y}$	$\mathrm{Y} . \mathbf{Z}^{\prime}$	YZ	$(\mathrm{YZ})^{\prime}$
1	1	1	0	1	0	1	0
1	1	0	1	1	0	0	1
1	0	1	0	0	0	0	1
1	0	0	1	0	0	0	1
0	1	1	0	0	1	1	0
0	1	0	1	0	0	0	1
0	0	1	0	0	0	0	1
0	0	0	1	0	0	0	1

Basic Logic Gates

- Gate is an electronic circuit being operates on one or more signals to produce output signals.

NOT

OR

OR

XNOR

Principal of Duality

- Using this Principal Dual relation can be obtained by :
- Changing each OR sign (+) with AND sign (.)
- Changing each AND sign (.) with OR sign (+)
- Replacing each 0 by 1 and 1 by 0 .
eg. $\quad 1+0=1$

$$
0.1=0
$$

[Dual relation]

BASIC THEOREMS OF BOOLEAN ALGEBRA

Property of 0 and 1

$0+X=X$
$1+X=1$
$0 . X=0$

1. $X=X$

Indempotence Law

$X+X=X$

X. $\mathrm{X}=\mathrm{X}$

Involution Law

Truth Table of Involution Law

X	X^{\prime}	$\left(X^{\prime}\right)^{\prime}$
1	0	1
0	1	0

Complementarity Law

$X+X^{\prime}=1$

$X . X^{\prime}=0$

Commutative Law

$X+Y=Y+X$

$X . Y=Y . X$

Associative Law

$$
X+(Y+Z)=(X+Y)+Z
$$

$X(Y Z)=(X Y) Z$

Truth Table of Associative Law

$$
X+(Y+Z)=(X+Y)+Z
$$

X	Y	z	Y + Z	$X+Y$	X + ($\mathrm{Y}+\mathrm{Z}$)	(X + Y) + Z
1	1	1	1	1	1^{---1}	$1^{--\overline{1}}$
1	1	0	1	1	1	1
1	0	1	1	1	11	1
1	0	0	0	1	1	1
0	1	1	1	1	! 1	1
0	1	0	1	1	! 1	\| 1
0	0	1	1	0	1 1	1
0	0	0	0	0	1	10

$X(Y Z)=(X Y) Z \quad$ can be obtain as above

Distributive Law

$\mathrm{X}+(\mathrm{YZ})=(\mathrm{X}+\mathrm{Y})(\mathrm{X}+\mathrm{Z})$

$3^{\text {rd }}$ Law

Truth Table of Distributive Law

$X(Y+Z)=X Y+X Z$

X	Y	Z	$Y+Z$	$X Y$	$X Z$	$X(Y+Z)$	$X Y+X Z$	
1	1	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1	1
1	0	1	1	0	1	1	1	1
1	0	0	0	0	0	0	1	0
0	1	1	1	0	0	0	1	0
0	1	0	1	0	0	0	1	1
0	0	1	1	0	0	0	0	1
0	0	0	0	0	0	1	0	1
						1	1	1

$\mathrm{X}+(\mathrm{YZ})=(\mathrm{X}+\mathrm{Y})(\mathrm{X}+\mathrm{Z})$ can be obtain as above

Absorption Law

$X(X+Y)=X$

$X+X Y=X$

De Morgan's Theorems

$(X+Y)^{\prime}=X^{\prime} Y^{\prime}$
$1^{\text {st }}$ Theorem

$(X . Y)^{\prime}=X^{\prime}+Y^{\prime} \quad 2^{\text {nd }}$ Theorem

Prove of $1^{\text {st }}$ De Morgan's Theorem

$$
(X+Y)^{\prime}=X^{\prime} Y^{\prime}
$$

Suppose : $X^{\prime} Y^{\prime}=1$ then $(X+Y)^{\prime}=1$ so $(X+Y)=0$

So $(X+Y)+X^{\prime} Y^{\prime}=1$
$=\left((X+Y)+X^{\prime}\right) \cdot\left((X+Y)+Y^{\prime}\right)$
$=\left(X+X^{\prime}+Y\right) .\left(X+Y+Y^{\prime}\right)$
$=(1+Y) \cdot(X+1)$
$=1.1$
= 1
PROVED

Suppose : $X^{\prime} Y^{\prime}=0$ then $(X+Y)^{\prime}=0$ so $(X+Y)=1$ So ($X+Y$). $X^{\prime} Y^{\prime}=0$
$=X^{\prime} Y^{\prime} .(X+Y)$
$=\left(X^{\prime}+Y^{\prime}+X\right) \cdot\left(X^{\prime}+Y^{\prime}+Y\right)$
$=\left(0 . Y^{\prime}\right)+\left(X^{\prime} .0\right)$
$=0+0$
$=0$
PROVED

Distribu
tive Law
[$0+1=1$]
$[\mathrm{X}+\mathrm{YZ}=(\mathrm{X}+\mathrm{Y})(\mathrm{X}+\mathrm{Z})]$

Associat ive Law

Minterms

It is a product of all the literals (with or without bar) within the logic system.

Find the minterms of $X+Y$.
Sol.

$$
\begin{aligned}
& X+Y=X .1+Y .1 \\
= & X \cdot\left(Y+Y^{\prime}\right)+Y .\left(X+X^{\prime}\right) \\
= & X Y+X Y^{\prime}+Y X+Y X^{\prime} \\
= & X Y+X Y+X Y^{\prime}+X X^{\prime} Y \\
= & X Y+X Y^{\prime}+X X^{\prime} Y
\end{aligned}
$$

Find the minterms of $A B+C$
Sol. Write the terms
Insert X's where letter is missing
Write all the combinations of $1^{\text {st }}$ term i.e. $A B X$:
Write all the combinations of $2^{\text {nd }}$ term i.e. XXC :

Minterm Designation Shorthand

Find the minterms designation of XYZ'
Sol. Write the terms
Substitute 1 and 0
Find the Decimal equivalent
Express decimal subscript of m Thus

	XY ${ }^{\prime}$
	110
	$1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}$
=	$4+2+0=6$
=	m_{6}
$X Y Z^{\prime}=m_{6}$	

Find the minterms designation of $A B^{\prime} C^{\prime}$
Sol. Write the terms
A B' C D'
Substitute 1 and 0
Find the Decimal equivalent

	A B' C D'
	1010
	$1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}$
=	$8+0+2+0=10$
	$=\quad \mathrm{m}_{10}$
AB'CD'	$=\mathrm{m}_{10}$

Maxterm

This is the sum of all literals (with or without bar) within the logic system.

It is the opposite of Minterm, here Bar represent to 1 and non-bar to 0 means $\quad X=0 \quad X^{\prime}=1$

Find the maxterms designation of AB'CD'
Sol. Write the terms

$$
\text { Substitute } 1 \text { and } 0
$$

$$
\begin{array}{ll}
& \begin{aligned}
& \text { AB'C D' } \\
& 0101 \\
& \\
&= 0 \times 2^{3}+1 \times 2^{2}+ \\
& 0+4+0+1=5 \\
&= \mathrm{M}_{5} \\
& \text { AB' }^{\prime} \mathrm{CD}^{\prime}=\mathrm{M}_{5}
\end{aligned}
\end{array}
$$

Find the Decimal equivalent
Express decimal subscript of m Thus

Canonical Expression

Boolean expression composed of either Minterm or Maxterms called Canonical Expression.
It can be represented in two forms :
(i) Sum-of-Product
(ii) Product-of-Sum

Sum-of-Product

SOP of Two variables X and Y and output is Z :

\mathbf{X}	\mathbf{Y}	Output (Z)	Product
1	1	1	$X Y$
1	0	1	$X Y^{\prime}$
0	1	$\mathbf{0}$	
0	0	1	$X^{\prime} Y^{\prime}$

Now add all the product term having output $Z=1 \quad: \quad X Y+X Y^{\prime}+X^{\prime} Y^{\prime}=Z$ So this is purely sum of minterm called Canonical Sum-of-Product

Sum-of-Product

Output [F] will be 1 if the inputs of 1 will be odd instead of all 1s

Product
XYZ
0
0

1	$X Y^{\prime} Z^{\prime}$
0	
1	$X^{\prime} Y Z^{\prime}$
1	$X^{\prime} Y^{\prime} Z$
$\mathbf{0}$	

Now add all the product term having output $Z=1 \quad: X Y Z+X Y^{\prime} Z^{\prime}+X^{\prime} Y Z^{\prime}+X^{\prime} Y^{\prime} Z=F$ So this is purely sum of minterm called Canonical Sum-of-Product

- Convert ($\left.\left.\left(X^{\prime} Y\right)+X^{\prime} Y^{\prime}\right)\right)^{\prime}$ into canonical SOP.

$$
\begin{aligned}
& \text { Sol. : ((X'Y)+X'Y') })^{\prime}=\left(X^{\prime} Y\right)^{\prime} \cdot\left(X^{\prime} Y^{\prime}\right)^{\prime} \\
& {\left[(A+B)^{\prime}=A^{\prime} . B^{\prime}\right]} \\
& {\left[(A B)^{\prime}=A^{\prime}+B^{\prime}\right]} \\
& =\left(X+Y^{\prime}\right)(X+Z) \\
& =X+\left(Y^{\prime} Z\right) \\
& =X\left(Y+Y^{\prime}\right)\left(Z+Z^{\prime}\right)+\left(X+X^{\prime}\right) Y^{\prime} Z \\
& =\left(X Y+X Y^{\prime}\right)\left(Z+Z^{\prime}\right)+X Y^{\prime} Z+X^{\prime} Y^{\prime} Z \\
& =Z\left(X Y+X Y^{\prime}\right)+Z^{\prime}\left(X Y+X Y^{\prime}\right)+X Y^{\prime} Z+X^{\prime} Y^{\prime} Z \\
& =Z X Y+Z X Y^{\prime}+Z^{\prime} X Y+Z^{\prime} X Y^{\prime}+X Y^{\prime} Z+X^{\prime} Y^{\prime} Z \\
& =X Y Z+X Y^{\prime} Z+X Y Z^{\prime}+X Y^{\prime} Z^{\prime}+X Y^{\prime} Z+X^{\prime} Y^{\prime} Z \\
& \text { = XYZ + XY'Z + XYZ' + XY'Z' + X'Y'Z } \\
& \text { Fill variable }
\end{aligned}
$$

-Convert $F=\Sigma(0,1,2,5)$ into Canonical SOP suing Short Hand.
Sol :

$$
\begin{aligned}
& \mathrm{F}=\mathrm{m}_{0}+\mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{5} \\
& \mathrm{~m}_{0}=000 \text { " } \mathrm{X}^{\prime} \mathrm{Y}^{\prime} Z^{\prime} \\
& \mathrm{m}_{1}=001 \text { " } \mathrm{X}^{\prime} \mathrm{Y}^{\prime} Z^{\prime} \\
& \mathrm{m}_{2}=010 \text { " } \mathrm{X}^{\prime} \mathrm{Z}^{\prime}
\end{aligned}
$$

So Canonical form of expression is $\mathbf{X}^{\prime} \mathbf{Y}^{\prime} \mathbf{Z}^{\prime}+\mathbf{X}^{\prime} \mathbf{Y}^{\prime} \mathbf{Z}+\mathbf{X}^{\prime} \mathbf{Y} \mathbf{Z}^{\prime}+\mathbf{X Y} Y^{\prime} \mathbf{Z}$

Product-of-Sum

Output [F] will be 1 if the inputs of 1 will be odd.

POS of Three variables X, Y and Z output is F :

X	Y	Z	F	Product
1	1	1	$\mathbf{1}$	
1	1	0	0	$X^{\prime}+Y^{\prime}+Z$
1	0	1	0	$X^{\prime}+Y+Z^{\prime}$
1	0	0	$\mathbf{1}$	
0	1	1	0	$X+Y^{\prime}+Z^{\prime}$
0	1	0	$\mathbf{1}$	
0	0	1	$\mathbf{1}$	
0	0	0	0	

Now add all the product term having output $Z=1$:

$$
\left(X^{\prime}+Y^{\prime}+Z\right) \cdot\left(X^{\prime}+Y+Z^{\prime}\right)+\left(X+Y^{\prime}+Z^{\prime}\right) \cdot(X+Y+Z)=F
$$

So this is purely sum of minterm called Canonical Sum-of-Product
-Convert $\mathrm{F}=\Pi(0,1,2,5)$ into Canonical POS(Maxterm) using Short Hand.
Sol :

$$
\begin{array}{lll}
F=M_{0} \cdot M_{1} \cdot M_{2} \cdot M_{5} \\
M_{0}=000 & \prime & X+Y+Z \\
M_{1}=001 & \prime \prime & X+Y+Z^{\prime} \\
M_{2}=010 & \prime \prime & X+Y^{\prime}+Z \\
M_{5}=101 & \prime \prime & X^{\prime}+Y+Z^{\prime}
\end{array}
$$

So Canonical form of expression is ($\mathbf{X}+\mathbf{Y}+\mathbf{Z}$) . ($\mathbf{X}+\mathbf{Y}+\mathbf{Z}^{\prime}$) . $\left(\mathbf{X}+\mathbf{Y}^{\prime}+\mathbf{Z}\right) \cdot\left(\mathbf{X}^{\prime}+\mathbf{Y}+\mathbf{Z}^{\prime}\right)$

Note : Above is Canonical where 1 s and 0 s is fixed at odd places but it can be asked only SOP or POS where the function may be any no. of 1 s .
eg.
POS:
$F=\Pi(1,2,3,4,6)$
SOP : $F=\sum(1,2,3,4,6)$ etc.
or

Qus. Simplify

$$
\begin{aligned}
& A B^{\prime} C D^{\prime}+A B^{\prime} C D+A B C D \\
= & A B^{\prime} C\left(D^{\prime}+D\right)+A B C D \\
= & A B^{\prime} C .1+A B C \cdot\left(D^{\prime}+D\right) \\
= & A B^{\prime} C+A B C \\
= & A C\left(B^{\prime}+B\right) \\
= & A C .1 \\
= & A C
\end{aligned}
$$

$$
\left[D^{\prime}+D=1\right]
$$

Qus. Simplify

$$
\begin{aligned}
& (X Y)^{\prime}+X^{\prime}+X Y \\
= & X^{\prime}+Y^{\prime}+X^{\prime}+X Y \\
= & X^{\prime}+Y^{\prime}+X Y \\
= & X^{\prime}+\left(Y^{\prime}+X Y^{\prime}\right) \\
= & X^{\prime}+Y^{\prime}+X \\
= & \left(X^{\prime}+X\right)+Y^{\prime} \\
= & 1+Y^{\prime} \\
= & 1
\end{aligned}
$$

$$
\left[(X Y)^{\prime}=X^{\prime}+Y^{\prime}\right]
$$

[eliminate common]

$$
\left[Y^{\prime} ’=Y\right]
$$

$$
\left[1+Y^{\prime}=1\right]
$$

Karnaugh Map [K-Map]

K-Map is the graphical representation of the fundamental products in a truth table. Where each squire represents the Minterm or Maxterm.

K-Map of 02 variables $X \& Y$

K-Map of 03 Variable X, Y \& Z

K-Map of 04 Variable W, X, Y \& Z

K-Map of 04 Variable $\mathrm{W}, \mathrm{X}, \mathrm{Y} \& \mathrm{Z}$

Reducing functions Through K-Map

Taking example of 4 variables

- SOP [SOP Σ]
- POS [POS П]

Example : Reduce $F(W, X, Y, Z)=\Sigma(0,2,7,8,10,15)$

Pair : $m_{7}+m_{15}$
Quad: $m_{0}+m_{2}+m_{8}+m_{10} m$
$=X Y Z$
= X'Z'
so $X Y Z+X^{\prime} Y^{\prime}$

Now solve same func. With algebraic method Reduce $F(W, X, Y, Z)=\Sigma(0,2,7,8,10,15)$

$\mathrm{m0}$	$=$	0000
m 2	$=$	$W^{\prime} X^{\prime} Y^{\prime} Z^{\prime}$
m 7	$=0010$	$=W^{\prime} X^{\prime} Y Z^{\prime}$
m 8	$=$	0111
m 10	$=$	$W^{\prime} X Y Z$
m 15	$=$	1000
$m X^{\prime} Y^{\prime} Z^{\prime}$		
	1111	$=W X^{\prime} Y Z^{\prime}$

```
F = W'X'Y'Z' + W'X'YZ' + W'XYZ + WX'Y'Z' + WX'YZ' + WXYZ
    = (WXYZ+W'XYZ) +(W'X'Y'Z'+WX'Y'Z')+(W'X'YZ' \(\left.+W X^{\prime} Y Z^{\prime}\right)\)
    \(=X Y Z\left(W+W^{\prime}\right)+X^{\prime} Y^{\prime} Z^{\prime}\left(W^{\prime}+W\right)+X^{\prime} Y Z^{\prime}\left(W^{\prime}+W\right)\)
    \(=X Y Z+X^{\prime} Y^{\prime} Z^{\prime}+X^{\prime} Y Z^{\prime}\)
    \(=X Y Z+X^{\prime} Z^{\prime}\left(Y^{\prime}+Y\right)\)
    \(=X Y Z+X^{\prime} Y^{\prime}\)

Example : Reduce \(F(W, X, Y, Z)=\Pi(0,2,7,8,10,15)\)


Pair : \(m_{7} \cdot m_{15}\)
Quad: \(m_{0} \cdot m_{2} \cdot m_{8} \cdot m_{10}\)
\(=X+Y+Z\)
\(=X^{\prime}+Z^{\prime}\)
so \((X+Y+Z) \cdot\left(X^{\prime}+Y^{\prime}\right)\)```

